

Energy Decision Support Tool: a tool to improve energy efficiency of irrigation systems

APEN September 2019

Rabi Maskey

Focus of the presentation

- Need for the tool
- Development of the tool
- Learnings from the use of the tool
- Where to from here

AGRICULTURE VICTORIA

The Goulburn-Murray Irrigation District

•The Goulburn-Murray Irrigation District (GMID) is in Northern Victoria, Australia and has ~15,000 farms

The District is a flat, intensively irrigated floodplain with a gravity-fed irrigation supply network. 650,000 ha irrigated land (and changing)

Irrigation Methods Changing

Over 220 CPLM irrigators in the SIR in 2018 up from <20 2008

Farmers invest for better water-use efficiency, higher productivity and labour savings

Economic Development, Jobs, Transport and Resources

What is the problem or need

- System changes need more energy in pursuit of water savings
- "Energy cost has been increasing
- Farmers don't know if their energy use is appropriate (i.e. do I have a problem)
- Tools exist, but complicated
- A simple tool is developed

60% real electricity price increase for business since 2003

Source: Australian Bureau of Statistics.

Development of the 'Energy Calculator'

The Energy Calculator was developed to allows an Irrigation Extension Officer to assist an irrigator to answer following questions:

- Is my irrigation system functioning efficiently?
- What is the likely cost : benefit of improving the energy efficiency of my system?
- What parts of my system can be improved to operate more efficiently?

Development of the 'Energy Calculator'

The Energy Calculator has two parts:

- Part I Energy Cost Assessment
- Part 2 System Energy Diagnostics
- Testing of the tool what did we do
 - 2 case studies
 - Methodology undertook system performance check (uniformity and application efficiency, operating pressure) on conjunction with energy assessment
 - One had a lot of information about their system, the other less understanding

Case study 1 – Part 1

Irrigation energy cost assessment

Power cost	Electricity	Diesel
	\$/KWh	\$/litre
	0.2	1

	Specify TDH		My figure	
	Electricity	Diesel		
Energy cost				
per ha	\$174 ha	\$210 ha		
per ML	\$23.3 ML	\$28.0 ML	\$30.0 ML	
Total energy cost				
This season	\$4,359	\$5,244.8	\$5,610	
Over 15 years	\$87,869	\$105,720	\$113,080	
Energy consumption				
per ha	872 kWh/ha	210 L diesel/ha		
per ML	117 kWh/ML	28 L diesel/ML		

Potential saving: \$1250/year \$25,200 over 15 years

List of irrigation system included in the Energy Calculator and typical operating pressures

System type	System Total	
	dynamic Head (m)	
Reuse system	4	
Pipe and riser system	20	
CPLM (low head)	21	
CPLM (medium head)	30	
CPLM (high head)	50	
Sub Surface Drip	25	
Specify TDH	User defined	

Part 2 – System energy diagnostics

Diagram showing the locations where system pressure is measured to determine system efficiency and diagnose energy losses

Environment, Land, Water and Planning

Jobs, Precincts and Regions

Case study 1– Part 2

System energy diagnostics

Energy source Energy unit cost (default: 0.25) Energy use	Electricity 0.2 150	\$/kWh kWh/ML	82
System pressure			
Suction line pressure •	1	m head	1.0 m
Delivery line pressure	35	PSI	24.6 m
Total dynamic head 🔍			25.6 m
Estimated pump efficiency Pumping costs	54 30.00	% \$/ML	

- Over size motor on pump leading to poor efficiency
- Potential solution to increase nozzle size to increase flow rate and take advantage of oversize pump
- Or change pump or install VSD

Lift above pump 😐	3	m head	3.0 m
Regulator pressure rating 🔍	15	PSI	10.5 m
End pressure	24	PSI	16.9 m
Excess pressure	4.0	PSI	2.8 m
Friction loss 🔍			8.2 m

Energy efficiency of systems in the SIR

Economic Development, Jobs, Transport and Resources

Findings

We successfully created a simple Energy Calculator that enables farmers to:

- Estimate the energy efficiency of their irrigation system
- Estimate the cost : benefit of improving the energy efficiency
- Identify what parts of the system can be altered to improve energy efficiency

The case studies have highlighted:

- The need to consider system performance (uniformity) when assessing energy efficiency
- The need for the assistance from an Extension Officer to input the correct data, interpret outputs and help identify solutions
- Need to educate farmers about importance of knowing and values of paying for service to improve system

Jobs, Precincts and Regions

Where to from here

Learnings

- Either we need to demonstrate/educate the importance of system and energy check so that farmers will value them (and pay in future)
- Or we (government) provide service for farmers
- Courses, education and Ag notes so landowner better understand their system and what to look for when purchasing a new system (capital vs operating costs)
- Include the tool in 'extensionAus'
- Add solar
- Roll out to landowners

Jobs, Precincts and Regions

